Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.

Identifieur interne : 001212 ( Main/Exploration ); précédent : 001211; suivant : 001213

Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.

Auteurs : Mohamed E I. Badawy [Égypte] ; Entsar I. Rabea

Source :

RBID : pubmed:23511055

Descripteurs français

English descriptors

Abstract

The current study focuses on the preparation of new N-(cinnamyl) chitosan derivatives as antimicrobial agents against nine types of crop-threatening pathogens. Chitosan was reacted with a set of aromatic cinnamaldehyde analogs by reductive amination involving formation of the corresponding imines, followed by reduction with sodium borohydride to produce N-(cinnamyl) chitosan derivatives. The structural characterization was confirmed by (1)H and (13)C NMR spectroscopy and the degrees of substitution ranged from 0.08 to 0.28. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens and Erwinia carotovora. A higher inhibition activity was obtained by N-(α-methylcinnamyl) chitosan with MIC 1275 and 1025 mg/L against A. tumefaciens and E. carotovora, respectively followed by N-(o-methoxycinnamyl) chitosan (MIC=1925 and 1550 mg/L, respectively). The antifungal assessment was evaluated in vitro by mycelial radial growth technique against Alternaria alternata, Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum, Fusarium solani, Pythium debaryanum and Phytophthora infestans. N-(o-methoxycinnamyl) chitosan showed the highest antifungal activity among the tested compounds against the airborne fungi A. alternata, B. cinerea, Bd. theobromae and Ph. infestans with EC₅₀ of 672, 796, 980 and 636 mg/L, respectively. However, N-(p-N-dimethylaminocinnamyl) chitosan was the most active against the soil born fungi F. oxysporum, F. solani and P. debaryanum (EC50=411, 566 and 404 mg/L, respectively). On the other hand, the chitosan derivatives caused significant reduction in spore germination of A. alternata, B. cinerea, F. oxysporum and F. solani compared to chitosan and the reduction in spore germination was higher than that of the mycelia inhibition. The synthesis and characterization of new chitosan derivatives are ongoing in our laboratory aiming to obtain derivatives with higher antimicrobial activities and used as safe alternatives to harmful microbicides.

DOI: 10.1016/j.ijbiomac.2013.03.028
PubMed: 23511055


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.</title>
<author>
<name sortKey="Badawy, Mohamed E I" sort="Badawy, Mohamed E I" uniqKey="Badawy M" first="Mohamed E I" last="Badawy">Mohamed E I. Badawy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt. m_eltaher@yahoo.com</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria</wicri:regionArea>
<wicri:noRegion>Alexandria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rabea, Entsar I" sort="Rabea, Entsar I" uniqKey="Rabea E" first="Entsar I" last="Rabea">Entsar I. Rabea</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23511055</idno>
<idno type="pmid">23511055</idno>
<idno type="doi">10.1016/j.ijbiomac.2013.03.028</idno>
<idno type="wicri:Area/Main/Corpus">001322</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001322</idno>
<idno type="wicri:Area/Main/Curation">001322</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001322</idno>
<idno type="wicri:Area/Main/Exploration">001322</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.</title>
<author>
<name sortKey="Badawy, Mohamed E I" sort="Badawy, Mohamed E I" uniqKey="Badawy M" first="Mohamed E I" last="Badawy">Mohamed E I. Badawy</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt. m_eltaher@yahoo.com</nlm:affiliation>
<country xml:lang="fr">Égypte</country>
<wicri:regionArea>Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria</wicri:regionArea>
<wicri:noRegion>Alexandria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Rabea, Entsar I" sort="Rabea, Entsar I" uniqKey="Rabea E" first="Entsar I" last="Rabea">Entsar I. Rabea</name>
</author>
</analytic>
<series>
<title level="j">International journal of biological macromolecules</title>
<idno type="eISSN">1879-0003</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acrolein (analogs & derivatives)</term>
<term>Acrolein (chemistry)</term>
<term>Agrobacterium tumefaciens (growth & development)</term>
<term>Anti-Infective Agents (chemical synthesis)</term>
<term>Anti-Infective Agents (chemistry)</term>
<term>Anti-Infective Agents (pharmacology)</term>
<term>Chitosan (analogs & derivatives)</term>
<term>Chitosan (chemical synthesis)</term>
<term>Chitosan (chemistry)</term>
<term>Chitosan (pharmacology)</term>
<term>Fungi (physiology)</term>
<term>Mycelium (growth & development)</term>
<term>Pectobacterium carotovorum (growth & development)</term>
<term>Spores, Fungal (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acroléine (analogues et dérivés)</term>
<term>Acroléine (composition chimique)</term>
<term>Agrobacterium tumefaciens (croissance et développement)</term>
<term>Anti-infectieux (composition chimique)</term>
<term>Anti-infectieux (pharmacologie)</term>
<term>Anti-infectieux (synthèse chimique)</term>
<term>Champignons (physiologie)</term>
<term>Chitosane (analogues et dérivés)</term>
<term>Chitosane (composition chimique)</term>
<term>Chitosane (pharmacologie)</term>
<term>Chitosane (synthèse chimique)</term>
<term>Mycelium (croissance et développement)</term>
<term>Pectobacterium carotovorum (croissance et développement)</term>
<term>Spores fongiques (croissance et développement)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analogs & derivatives" xml:lang="en">
<term>Acrolein</term>
<term>Chitosan</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemical synthesis" xml:lang="en">
<term>Anti-Infective Agents</term>
<term>Chitosan</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Acrolein</term>
<term>Anti-Infective Agents</term>
<term>Chitosan</term>
</keywords>
<keywords scheme="MESH" qualifier="analogues et dérivés" xml:lang="fr">
<term>Acroléine</term>
<term>Chitosane</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Acroléine</term>
<term>Anti-infectieux</term>
<term>Chitosane</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Agrobacterium tumefaciens</term>
<term>Mycelium</term>
<term>Pectobacterium carotovorum</term>
<term>Spores fongiques</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Mycelium</term>
<term>Pectobacterium carotovorum</term>
<term>Spores, Fungal</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Anti-infectieux</term>
<term>Chitosane</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Anti-Infective Agents</term>
<term>Chitosan</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Champignons</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Fungi</term>
</keywords>
<keywords scheme="MESH" qualifier="synthèse chimique" xml:lang="fr">
<term>Anti-infectieux</term>
<term>Chitosane</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The current study focuses on the preparation of new N-(cinnamyl) chitosan derivatives as antimicrobial agents against nine types of crop-threatening pathogens. Chitosan was reacted with a set of aromatic cinnamaldehyde analogs by reductive amination involving formation of the corresponding imines, followed by reduction with sodium borohydride to produce N-(cinnamyl) chitosan derivatives. The structural characterization was confirmed by (1)H and (13)C NMR spectroscopy and the degrees of substitution ranged from 0.08 to 0.28. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens and Erwinia carotovora. A higher inhibition activity was obtained by N-(α-methylcinnamyl) chitosan with MIC 1275 and 1025 mg/L against A. tumefaciens and E. carotovora, respectively followed by N-(o-methoxycinnamyl) chitosan (MIC=1925 and 1550 mg/L, respectively). The antifungal assessment was evaluated in vitro by mycelial radial growth technique against Alternaria alternata, Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum, Fusarium solani, Pythium debaryanum and Phytophthora infestans. N-(o-methoxycinnamyl) chitosan showed the highest antifungal activity among the tested compounds against the airborne fungi A. alternata, B. cinerea, Bd. theobromae and Ph. infestans with EC₅₀ of 672, 796, 980 and 636 mg/L, respectively. However, N-(p-N-dimethylaminocinnamyl) chitosan was the most active against the soil born fungi F. oxysporum, F. solani and P. debaryanum (EC50=411, 566 and 404 mg/L, respectively). On the other hand, the chitosan derivatives caused significant reduction in spore germination of A. alternata, B. cinerea, F. oxysporum and F. solani compared to chitosan and the reduction in spore germination was higher than that of the mycelia inhibition. The synthesis and characterization of new chitosan derivatives are ongoing in our laboratory aiming to obtain derivatives with higher antimicrobial activities and used as safe alternatives to harmful microbicides.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23511055</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2015</Year>
<Month>11</Month>
<Day>19</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1879-0003</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<PubDate>
<Year>2013</Year>
<Month>Jun</Month>
</PubDate>
</JournalIssue>
<Title>International journal of biological macromolecules</Title>
<ISOAbbreviation>Int J Biol Macromol</ISOAbbreviation>
</Journal>
<ArticleTitle>Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.</ArticleTitle>
<Pagination>
<MedlinePgn>185-92</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijbiomac.2013.03.028</ELocationID>
<ELocationID EIdType="pii" ValidYN="Y">S0141-8130(13)00114-1</ELocationID>
<Abstract>
<AbstractText>The current study focuses on the preparation of new N-(cinnamyl) chitosan derivatives as antimicrobial agents against nine types of crop-threatening pathogens. Chitosan was reacted with a set of aromatic cinnamaldehyde analogs by reductive amination involving formation of the corresponding imines, followed by reduction with sodium borohydride to produce N-(cinnamyl) chitosan derivatives. The structural characterization was confirmed by (1)H and (13)C NMR spectroscopy and the degrees of substitution ranged from 0.08 to 0.28. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens and Erwinia carotovora. A higher inhibition activity was obtained by N-(α-methylcinnamyl) chitosan with MIC 1275 and 1025 mg/L against A. tumefaciens and E. carotovora, respectively followed by N-(o-methoxycinnamyl) chitosan (MIC=1925 and 1550 mg/L, respectively). The antifungal assessment was evaluated in vitro by mycelial radial growth technique against Alternaria alternata, Botrytis cinerea, Botryodiplodia theobromae, Fusarium oxysporum, Fusarium solani, Pythium debaryanum and Phytophthora infestans. N-(o-methoxycinnamyl) chitosan showed the highest antifungal activity among the tested compounds against the airborne fungi A. alternata, B. cinerea, Bd. theobromae and Ph. infestans with EC₅₀ of 672, 796, 980 and 636 mg/L, respectively. However, N-(p-N-dimethylaminocinnamyl) chitosan was the most active against the soil born fungi F. oxysporum, F. solani and P. debaryanum (EC50=411, 566 and 404 mg/L, respectively). On the other hand, the chitosan derivatives caused significant reduction in spore germination of A. alternata, B. cinerea, F. oxysporum and F. solani compared to chitosan and the reduction in spore germination was higher than that of the mycelia inhibition. The synthesis and characterization of new chitosan derivatives are ongoing in our laboratory aiming to obtain derivatives with higher antimicrobial activities and used as safe alternatives to harmful microbicides.</AbstractText>
<CopyrightInformation>Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Badawy</LastName>
<ForeName>Mohamed E I</ForeName>
<Initials>ME</Initials>
<AffiliationInfo>
<Affiliation>Department of Pesticide Chemistry and Technology, Faculty of Agriculture, 21545-El-Shatby, Alexandria University, Alexandria, Egypt. m_eltaher@yahoo.com</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Rabea</LastName>
<ForeName>Entsar I</ForeName>
<Initials>EI</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>03</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Int J Biol Macromol</MedlineTA>
<NlmUniqueID>7909578</NlmUniqueID>
<ISSNLinking>0141-8130</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000890">Anti-Infective Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>7864XYD3JJ</RegistryNumber>
<NameOfSubstance UI="D000171">Acrolein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9012-76-4</RegistryNumber>
<NameOfSubstance UI="D048271">Chitosan</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>SR60A3XG0F</RegistryNumber>
<NameOfSubstance UI="C012843">cinnamic aldehyde</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000171" MajorTopicYN="N">Acrolein</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="Y">analogs & derivatives</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000890" MajorTopicYN="Y">Anti-Infective Agents</DescriptorName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048271" MajorTopicYN="Y">Chitosan</DescriptorName>
<QualifierName UI="Q000031" MajorTopicYN="N">analogs & derivatives</QualifierName>
<QualifierName UI="Q000138" MajorTopicYN="N">chemical synthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D025282" MajorTopicYN="N">Mycelium</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016973" MajorTopicYN="N">Pectobacterium carotovorum</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="Y">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013172" MajorTopicYN="N">Spores, Fungal</DescriptorName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>11</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2013</Year>
<Month>02</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>03</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>3</Month>
<Day>21</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>2</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23511055</ArticleId>
<ArticleId IdType="pii">S0141-8130(13)00114-1</ArticleId>
<ArticleId IdType="doi">10.1016/j.ijbiomac.2013.03.028</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Égypte</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Rabea, Entsar I" sort="Rabea, Entsar I" uniqKey="Rabea E" first="Entsar I" last="Rabea">Entsar I. Rabea</name>
</noCountry>
<country name="Égypte">
<noRegion>
<name sortKey="Badawy, Mohamed E I" sort="Badawy, Mohamed E I" uniqKey="Badawy M" first="Mohamed E I" last="Badawy">Mohamed E I. Badawy</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001212 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001212 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23511055
   |texte=   Synthesis and structure-activity relationship of N-(cinnamyl) chitosan analogs as antimicrobial agents.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23511055" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024